STRIVING FOR PERFECTION IN TOTAL KNEE ARTHROPLASTY

CURRENT OPTIONS AND ALTERNATIVE THERAPIES FOR ARTHRITIS

Matthew C Niesen MD

10/3/2019

DISCLOSURES

- Consultant
 - Conformis
- -Thank you for this opportunity!

OUTLINE

- Introduction to Arthritis and Total Joint Arthroplasty
- Traditional Total Knee Arthroplasty and outcomes
- Evolution and innovations (Custom instrumentation, implants)
- Comparison of options
- Alternative therapies (Stem Cell and PRP)
- Question and Answer

PROFESSIONAL BACKGROUND

- High School: Middleton
- College: UW Madison
- Medical School: UW Madison
- Residency (5 years): UCLA
- Fellowship: Mayo Clinic
 - Hip, Knee and Shoulder Replacement
- Prairie Ridge Health
 - Orthopedic Surgeon (August 2015)
 - Joint replacement specialist
 - General orthopedics
 - Chief of Staff (January 2019)
 - Associate professor MCOW (2018)
- IMEs with Crawford Evaluation Group
 - ~1.5 years

INTRODUCTION

- From 2013–2015, an estimated 54.4 million US adults (22.7%) have a form of arthritis: Osteoarthritis, rheumatoid arthritis, etc.
- The percentage of adults with arthritis varies by state, ranging from 17.2% in Hawaii to 33.6% in West Virginia in 2015.
 - Wisconsin ~ 22%
- **Projected Data:**
 - By 2040, an estimated 78 million (26%) US adults aged 18 years or older are projected to have doctor-diagnosed arthritis.

QUESTION 1

• True of False:

• Arthritis is something that grows in and eventually destroys the joint?

WHAT IS ARTHRITIS?

- False
- Literal Definition is "inflammation of the joint"
 - Misnomer
- In reality its simply a loss of articular cartilage
 - Nothing actually grows in the joint that needs to be removed
 - Progression of disease
 - "wearing tread on a tire"
 - Mild Severe (End Stage)

ARTICULAR CARTILAGE

- Low friction surface on the ends of our bones
 - Hips, Knees, Shoulders, fingers, etc
- Lubricates and cushions movement
 - Slide and glide
- No nerve receptors (No pain)
- "Q-Ball"

NORMAL VS. ARTHRITIC

A PTHPITIC KNIFF

SURGICAL OPTIONS

- Arthroscopy poor option for arthritis
 - Rare indications
 - Loose body, unstable meniscus ?
- Total joint replacement

TOTAL KNEE REPLACEMENT

Femoral Component

Polyethylene Bearing (acts as cartilage)

TOTAL HIP REPLACEMENT

TOTAL HIP REPLACEMENT

TOTAL SHOULDER REPLACEMENT

TOTAL KNEE ARTHROPLASTY

- 1860-German surgeon, Themistocles Gluck, surgically implanted the first primitive hinge joints made of ivory.
- 1951 Introduction of the Walldius hinge joint. Initially this was manufactured from acrylic. – Early failure
- 1958 Introduction of cobalt and chrome surfaces. –Still the gold standard
- Early 1960s, John Charnley's cemented metal-on-polyethylene THA inspired the development of the modern total knee replacement.

TOTAL KNEE ARTHROPLASTY

- Early 1970s The metal-on-polyethylene condylar design which completely replaced the femoral and tibial articulating surfaces,
- Improvements in component materials, geometry and fixation have continued since the 1970s and 1980s.
- Advancements in component materials, geometry/shape, sizing, fixation, instrumentation since the 1970s:
- Too much to discuss! Just a few...
 - Total versus partial versus PF
 - Cemented versus press-fit
 - Gender knees-sizing
 - High flexion options
 - Polyethylene options
 - Crosslinked polyethylene
 - Navigation and robotics
 - Custom 3-D printed implants

TRADITIONAL KNEE ARTHROPLASTY

TRADITIONAL KNEE ARTHROPLASTY

TRADITIONAL CUTTING GUIDES IN TKA

TRADITIONAL CUTTING GUIDES

- Challenge of precision and reproduction of "ideal cut" and mechanically aligned knee
 - Loose knee- poorly balanced painful, wear/loosening
- Blood loss from IM rod
- Increased pain and swelling after surgery
- Risk of fracture low risk
- Still considered gold standard
 - Insurance coverage of PSI, custom implants varies considerably

QUESTION 2

- What percentage of patients are satisfied after total knee arthroplasty?
- 1.100%
- 2.90-99%
- 3.70-89%
- 4.60-69%
- 5. Less than 60%

OUTCOMES AFTER JOINT REPLACEMENT

- Improved quality of life, pain, function, range of motion.
 - Complications do occur
 - 5-10% depending on procedure
- ~80% satisfaction with THA, TKA, TSA
- Longevity: ~1% failure per year for joint replacement
 - General rule for TSA, THA, TKA

OUTCOME OF TRADITIONAL TOTAL KNEE ARTHROPLASTY

- Typical range 15-20% of patients are unsatisfied
 - 1 in 5!

- This dis-satisfaction has lead to continued evolution in implants
 - Necessity breeds innovation
 - Optimized size, rotation, alignment, fixation, etc
 - Improve every variable in the equation

IMPROVED ALIGNMENT WITH NAVIGATION/ROBOTICS/PSI

- Rand and Coventry 1988:
 - 10 yr survival if V/V < 4 deg: 90%
 - 10 yr survival if V/V > 4 deg: 73%
- Ritter 1994:
 - Highest rate of aseptic loosening in knees with > 4 deg varus
- Jeffery 1991:
 - 24% loosening if mechanical axis > 3 deg V/V
 - 3% if < 3 deg

IMPROVED ALIGNMENT WITH NAVIGATION/ROBOTICS/PSI

- Promote the durability of TKA by sharing load medially and laterally
- Alignment errors >3 degrees varus/ valgus (outliers)
 - Correlation to poorer results/increased rate of aseptic loosening

Cemented AGCs (n=6070) Failure Rate by Overall Alignment in Degree

Post Operative Alignment

- Improved/decreased rate of outliers with all of this technology
 - 3 degree goal
 - Ultimately (in my opinion) the surgeon's skill, attention to detail, etc. is a key factor
- Arbab 2018 The Knee
 - ~15% outliers with PSI versus ~23% conventional
 - MRI based PSI
- Jeon 2019 Journal of arthroplasty
 - ~11% for robot-assisted group versus ~17% in the conventional group
- Levengood 2018
 - 100% within 3 degrees
 - 84% at 0%
 - Remaining 16% within $+/-2^{\circ}$ of neutral.
 - CT based patient cutting jigs

- "When it comes to fit, close isn't good enough"
- If the implant extends over the bone by as few as 3mm, that can be a significant cause of pain after surgery.
 - Overhang ≥3mm affects 40% of men and 68% of women with traditional knee replacement implants
- Custom implants are now being used to provide a customized fit and perfect rotation specific to patient's knee.
 - Improved alignment, rotation, offset, size, coverage of bone

• Martin 2016

Higher satisfaction rates with the custom knees in comparison to traditional, "off-the-shelf" knees.

- At one-year follow-up:
 - 94% of custom knees satisfied (Still not 100%)
 - 74% of off-the-shelf satisfied.
- Also reported custom knees had significant increase in patient reported outcome score and were able to return to activities of daily living faster when compared to offthe-shelf patients.

EVOLUTION IS HAPPENING WITH ALL JOINT REPLACEMENT

QUESTION 3

- If I needed a knee replacement I would get:
- 1. Whatever my surgeon recommended
- 2. An off the shelf knee with traditional instrumentation
- 3. An off the shelf knee with PSI, robot assisted, navigation
- 4. A Custom knee and Custom implant

ALTERNATIVE THERAPIES

Traditional options

- NSAIDs, weight loss/exercise, bracing
- CSI, Viscosupplementation

- Orthobiologics
 - Stem Cell, PRP, HA
 - Huge growth in orthopedics over past 5-10+ years

PRPAND STEM CELL

- "Regenerative Medicine"
 - Uses idea that your body has ability to heal injury
 - Paper cut
- PRP and Stem cell/BMAC
 - Tendonitis, fasciitis- anti-inflammatory
 - Tennis elbow/lateral epicondylitis
 - Enhance repairs in orthopedic procedures
 - ACL and meniscus repairs
 - Rotator cuff repairs, Quadriceps tendon repairs, Achilles repairs
 - Treatment for arthritis has been growing as well

PRPAND "STEM CELL"

Platelet-poor plasma

Buffy coat (platelets and white blood cells)

Red blood cells

PRP

- Works via biologically active proteins: PDGF, TGF, IGF, FGF, VEGF. These are expressed by platelets are possibly change gene expression in target cells
 - PDGF- stimulator of cell proliferation
 - TGF- abundant in bone and platelets and promotes healing

End result – these growth hormones effect cellular recruitment to the environment and decrease inflammation.

PRP

- Autologous product
 - Variability in patients- platelet levels/amount of growth factors
 - Variability in how sample is obtained/prepared
 - No consensous if leukocytes are good or bad
 - Leukocyte poor versus leukocyte rich Leukocytes can enhance concentration of growth factors, however can increase local inflammation.
 - Shorter centrifuge time and filtration time => Leukocyte poor
 - Literature is split on which is superior

PRP

- PRP in arthritis-
 - PRP increases chondrocyte growth and production of components of cartilage – PGs and type 2 collagen in lab settings
 - PRP has anti-inflammatory effect
 - Hope would be PRP enhances cartilage repair and slows degradation in arthritis.

PRP LITERATURE

- 7 reviews/meta-analyses looking at PRP in OA treatment
 - Chang 2014 Meta-analysis of 8 studies, 1,543 patients.
 - PRP showed benefit for 12 months. Benefit greater then seen with HA in patients with mild to moderate arthritis.
 - Laudy 2014 PRP vs. HA vs. Placebo
 - 6 RCTs, 4 non RCT-s. Found improved function, WOMAC scores pain scores, after PRP in comparison to HA and placebo
 - Riboh 2015 9 studies. LRPRP vs LPRPP vs HA
 - LPPRP improved pain and function. LRPRP same effect as HA
 - Both PRP injections increased swelling and pain in comparison to HA
- Overall Huebner 2019
 - "Literature suggests PRP is a promising therapy for symptom relief and improved functional outcomes in patients with OA for at least 12 months."

STEM CELL/BMAC

- Cell therapy
- BMAC collect from bone via percutaneous fashion
 - Fast, safe, low donor site morbidity
 - Immediately processed and without manipulation
 - Classified through FDA as 361 product- are not subject to premarket review and approval

PRPAND "STEM CELL"

Platelet-poor plasma

Buffy coat (platelets and white blood cells)

Red blood cells

STEM CELL/BMAC

- BMAC is rich in mesenchymal stem cells (MSCs)
 - Potential for self renewal of tissue, healing
- BMAC is rich in IL-1Ra protein
 - Anti-inflammatory affect
- BMAC contains platelets

BMAC LITERATURE

- Wakitani 2002- BMAC with HTO
 - Did arthroscopic evaluation 42 weeks after treatment
 - All regions of cartilage defects were covered in white tissue
 - Improved arthroscopic cartilage grades, however no change in clinical outcomes
- Multiple studies have shown improved clinical outcomes after BMAC 6-12 months
 - Improved pain, increased walking distance, improved WOMAC scores, Potential increase in cartilage thickness on MRI
 - Orozco 2013, Kim 2014, Shapiro 2017, Sampson 2016
- Overall Huebner 2019
 - "Further and more methodologically stringent studies need to be done in order to evaluate the benefit of BMAC for treatment of OA."

SUMMARY OF ORTHOBIOLOGICS

- Treatments have shown promise in literature
 - Safe options/alternatives
 - Work by targeting inflammation, slow/repair cartilage damage
 - Up to 24 months of improvement
 - Cannot turn back the clock/regrow normal cartilage
- Still substantial gaps in our knowledge indications, preparations, treatment methods/frequency
- No manipulation of therapies allows treatments to be used without FDA regulation
- Not covered by insurance as considered experimental
 - Out of pocket cost can be high

THANK YOU

